Search results for "Polycyclic group"
showing 2 items of 2 documents
Groups with soluble minimax conjugate classes of subgroups
2008
A classical result of Neumann characterizes the groups in which each subgroup has finitely many conjugates only as central-by-finite groups. If $\mathfrak{X}$ is a class of groups, a group $G$ is said to have $\mathfrak{X}$-conjugate classes of subgroups if $G/core_G(N_G(H)) \in \mathfrak{X}$ for each subgroup $H$ of $G$. Here we study groups which have soluble minimax conjugate classes of subgroups, giving a description in terms of $G/Z(G)$. We also characterize $FC$-groups which have soluble minimax conjugate classes of subgroups.
Some considerations on the nonabelian tensor square of crystallographic groups
2011
The nonabelian tensor square $G\otimes G$ of a polycyclic group $G$ is a polycyclic group and its structure arouses interest in many contexts. The same assertion is still true for wider classes of solvable groups. This motivated us to work on two levels in the present paper: on a hand, we investigate the growth of the Hirsch length of $G\otimes G$ by looking at that of $G$, on another hand, we study the nonabelian tensor product of pro--$p$--groups of finite coclass, which are a remarkable class of solvable groups without center, and then we do considerations on their Hirsch length. Among other results, restrictions on the Schur multiplier will be discussed.